Magnetism of nanowires driven by novel even-odd effects.
نویسندگان
چکیده
The parity of the number of atoms in finite antiferromagnetic nanowires deposited on ferromagnets is shown to be a crucial quantity determining their magnetic ground state. Relating results of the full-potential Korringa-Kohn-Rostoker method for noncollinear magnetism from first principles to a Heisenberg model, we show that the magnetic structure changes dramatically across the entire nanowire if one single atom is added to it. Infinite and finite even-numbered nanochains exhibit always noncollinear magnetism, while odd-numbered wires lead under given conditions to a collinear ferrimagnetic ground state. This extremely nonlocal effect occurs only for nanosized wires.
منابع مشابه
Electronic Structure and Parity Effects in Correlated Nanosystems
We discuss the spectral, transport and magnetic properties of quantum nanowires composed of N 6 13 atoms and containing either even or odd numbers of valence electrons. In our approach we combine Exact Diagonalization and Ab Initio calculations (EDABI method). The analysis is performed as a function of the interatomic distance. The momentum distribution differs drastically for those obtained fo...
متن کاملFerromagnetism and semiconducting of boron nanowires
More recently, motivated by extensively technical applications of carbon nanostructures, there is a growing interest in exploring novel non-carbon nanostructures. As the nearest neighbor of carbon in the periodic table, boron has exceptional properties of low volatility and high melting point and is stronger than steel, harder than corundum, and lighter than aluminum. Boron nanostructures thus ...
متن کاملEmerging Magnetism in Platinum Nanowires
We have investigated infinitely long, monostrand Pt nanowires theoretically, and found that they exhibit Hund’s rule magnetism. We find a spin moment of 0.6 μB per atom, at the equilibrium bond length. Its magnetic moment increases with stretching. The origin of the wire magnetism is analyzed and its effect on the conductance through the wire is discussed.
متن کاملSkolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملElectronic Structure and Magnetism of Mn-Doped ZnO Nanowires
The geometric structures, electronic and magnetic properties of Mn-doped ZnO nanowires were investigated using density functional theory. The results indicated that all the calculated energy differences were negative, and the energy of the ground state was 0.229 eV lower than ferromagnetic coupling, which show higher stability in antiferromagnetic coupling. The calculated results indicated that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 101 10 شماره
صفحات -
تاریخ انتشار 2008